חAmIBIA UחIVERSITY OF SCIEחCE AПD TECHחOLOGY

FACULTY OF COMPUTING AND INFORMATICS

DEPARTMENT OF COMPUTER SCIENCE

QUALIFICATION: BACHELOR OF COMPUTER SCIENCE	
QUALIFICATION CODE: O7BACS	LEVEL: 7
COURSE: ARTIFICIAL INTELLIGENCE	COURSE CODE: ARI711S
DATE: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 93

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Prof. JOSE QUENUM
MODERATOR:	Mr STANTIN SIEBRITZ

INSTRUCTIONS

1. Answer ALL the questions.
2. Read all the questions carefully before answering.
3. Number the answers clearly

Question 1
(a) Consider the blocks world. The blocks can be on a table or in a box. Consider three generic actions: a_{0}, a_{1}, and a_{2} described as follows:
a_{0} : when applied to a block, will keep it in the box;
a_{1} : when applied to a block, will move it on the table;
a_{2} : when applied to two blocks, will move the first one on top of the second one.
Consider the following four states in the system:
S_{0} : all blocks are in the box, no block is on the table;
S_{1} : only block B is on the table; all other blocks are in the box;
S_{2} : both blocks B and C are on the table, with C on top of B;
S_{3} : blocks B, C and D are on the table, with D on top of C and C on top of B.
Furthermore, additional information is provided in Table 1, where each state has a reward, possible actions and a transition model for each action. Note that for a given action, the probability values indicated in its transition model all sum up to 1 .

Table 1: Additional information

State	Reward	Action	Transition Model
S_{0}	ro	$\begin{aligned} & \mathrm{a}_{\mathrm{ob}} \\ & \mathrm{a}_{\mathrm{b}} \end{aligned}$	$\begin{gathered} \left(1, \mathrm{~S}_{0}\right) \\ \left(\mathrm{p}_{0}, \mathrm{~S}_{0}\right) ;\left(\mathrm{p}_{1}, \mathrm{~S}_{1}\right) \end{gathered}$
S_{1}	r_{1}	$\begin{aligned} & a_{0 c} \\ & a_{1 c} \\ & a_{2 c} \end{aligned}$	$\begin{gathered} \left(1, \mathrm{~S}_{1}\right) \\ \left(\mathrm{p}_{0}^{1}, \mathrm{~S}_{1}\right) ;\left(\mathrm{p}_{1}^{1}, \mathrm{~S}_{4}\right) ;\left(\mathrm{p}_{2}^{1}, \mathrm{~S}_{2}\right) \\ \left(\mathrm{p}_{0}^{2}, \mathrm{~S}_{1}\right) ;\left(\mathrm{p}_{1}^{2}, \mathrm{~S}_{2}\right) ; \end{gathered}$
S_{2}	r_{2}	$\begin{aligned} & a_{0 d} \\ & a_{1 d} \\ & a_{2 d} \end{aligned}$	$\begin{gathered} \left(1, \mathrm{~S}_{2}\right) \\ \left(\mathrm{p}_{0}^{3}, \mathrm{~S}_{2}\right) ;\left(\mathrm{p}_{1}^{3}, \mathrm{~S}_{5}\right) ;\left(\mathrm{p}_{2}^{3}, \mathrm{~S}_{3}\right) \\ \left(\mathrm{p}_{0}^{4}, \mathrm{~S}_{2}\right) ;\left(\mathrm{p}_{1}^{4}, \mathrm{~S}_{3}\right) ; \end{gathered}$
S_{3}	100	-	-

Assuming we model this problem as Markov Decision Process ($\mathcal{M D P}$) and consider a discount value σ, provide the utility of each of the states $\mathrm{S}_{0}, \mathrm{~S}_{1}$ and S_{2} for the first three iterations using the value iteration algorithm. Note that although the states S_{4} and S_{5} have not been defined, they should be assumed in the system.
(b) Consider the following policy, $\pi_{0}=\left\{\mathrm{S}_{0} \mapsto \mathrm{a}_{0 \mathrm{~b}}, \mathrm{~S}_{1} \mapsto \mathrm{a}_{1 \mathrm{c}}, \mathrm{S}_{2} \mapsto \mathrm{a}_{2 \mathrm{~d}}\right\}$. Is π_{0} optimal? Explain.

Question 2

[15 points]
The diagram in Figure 1 represents the extensive form of a sequential game

1. Provide the strategic form associated with the game;
2. Does any player have a dominant strategy?
3. Is there a dominant strategy equilibrium?

Figure 1: Sequential Game
4. What are the Nash equilibria?

Question 3
[15 points]
(a) Consider a game \mathcal{G} whose strategic form is represented as follows:

Player2

		\imath_{1}	\jmath_{1}	ℓ_{1}
Player1	\imath_{0}	$(7,2)$	$(2,5)$	$(6,3)$
	\jmath_{0}	$(2,2)$	$(6,5)$	$(4,8)$
	ℓ_{0}	$(3,1)$	$(2,7)$	$(4,9)$

Is there a dominated strategy for Player 2? If yes eliminate it;
(b) The resulting game is now called \mathcal{G}^{\prime}. Is ℓ_{0} a worse strategy for Player 1 than playing a mixed strategy of τ_{0} and \jmath_{0} in \mathcal{G}^{\prime} ?
(c) what is the payoff of each player when they play a mixed strategy with Player 1 eliminat-
ing ℓ_{0} in \mathcal{G}^{\prime} ?

Question 4

\qquad [20 points]
Consider the blocks world. Here we have seven (7) blocks: A, B, C, D, E, F and G. There is also a table with a capacity of three (3) blocks (i.e., three distinct blocks can lay on the table at any point in time simultaneously). It is assumed that a block can either be inside the box or outside. When outside the box, a block can either be on the table or on top of another block.

We have the following predicates:
ontable (x) : the block x is on the table;
on (x, y) : the block x lays on top of the block y ;
$\operatorname{clear}(\mathrm{x})$: the block x is clear, i.e., there is nothing on top of it;
inbox (x) : the block x is inside the box.
Moreover, the following actions are introduced:
pick(x) : which picks a block from the box and drops it on the table;
$d r o p(\mathrm{x}, \mathrm{y}):$ which drops the block on either the table or another block.
Consider a partial plan Q containing two actions: a_{0} and a_{2}, with $\mathrm{a}_{0} \prec \mathrm{a}_{2}$. The action a_{0} has the following effect:
ontable (B); ontable (C); ontable (E); clear (B); clear (C); clear (E);inbox (D);inbox (F);inbox (G);

The action a_{2} leads to a goal state and has the following pre conditions:

$$
\text { ontable (F); ontable }(\mathrm{A}) ; \text { clear (Table }) \text {; on }(\mathrm{B}, \mathrm{~A}) \text {; on }(\mathrm{C}, \mathrm{~B}) ; \text { on }(\mathrm{D}, \mathrm{C}) ; \text { on }(\mathrm{E}, \mathrm{~F}) \text {; }
$$

Modify Q to generate a complete and correct plan.

